

Design and development of a non-invasive optical volume measurement system for sepsis management

Alexander Proctor, Mark Thivierge

University of South Florida, Department of Medical Engineering

Stanford Biodesign Model

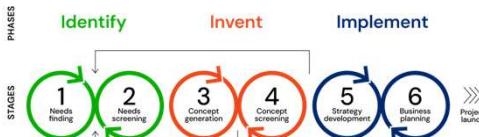


Figure 1: Stanford Biodesign Model which guided this project [1]

Background Research

Sepsis Fundamentals

- Most expensive disease for U.S. hospitals (\$38.2 billion) [2]
- Inaccurate immune reaction to infection
- Excessive blood clots, low blood pressure, organ failure, and death** [3]
- Around 2 million adults develop sepsis annually in the U.S. [4]
- Incidence rates are significantly higher in lower income areas [5]
- IV fluids are important aspects of sepsis treatment [6]

Sepsis Management

Proper IV fluid (crystalloid, colloidal, and medicinal) administration is critical for sepsis patients, placing **heavy demands on medical staff**. To ease this burden, our project uses **LiDAR technology** to monitor IV volume without disrupting flow.

Existing Solutions

Examples of existing and emerging IV monitoring solutions include:

- Infusion pumps (elastomeric, volumetric, syringe) - 73% of hospitals in the U.S. utilize infusion pumps [7]
- Optical measurements (IR alert, DripAssist, FIVAflo, ivWatch) [8,9]
- Capacitive sensors [10]
- Strain gauges

Existing infusion monitoring solutions **may not have continuous/remote monitoring**, and **cost ranges from \$400 to several thousand** [9].

Impacts

Cultural: sepsis threatens **vulnerable individuals**, straining communities

Global: rural areas especially outside U.S. more vulnerable to sepsis

Social: assists **healthcare workload**, reduces stress, better continuous care

Economic: accessible device, scalable manufacturing

Design Requirements and Acceptance Criteria

Need statement: A way to **reduce the time spent on active IV fluid monitoring** by health professionals to **improve the workflow** during sepsis management in **emergency settings**.

Acceptance Criteria	Required Metrics
Non-invasive	Does not interact with inside of bag
Accurate	$\leq 10\%$ volume error of 500 mL bag
Continuous Monitoring	Takes multiple measurements without additional input
Remote Monitoring	Data streamed to separate device in user interface (UI)
Prevents Interference	Identifies bag from environment
Lightweight	Below 5 lb
Inexpensive	Below \$400
Proximity to IV bag	Can scan a bag 40 cm away or closer

References

1. E. Proctor, M. Thivierge, C. Brinson, U. Yilmaz, and J. Watson, *Biodesign: The Process of Innovating Medical Technologies*, Cambridge: University Press, 2015.
2. L. Liang, B. Moore, and A. Sora, "National hospital costs: the most expensive conditions by payer," 2017, 2020.
3. E. Verner et al., "Surviving sepsis campaign: international guidelines for management of sepsis and septic shock 2021," *Intensive Care Medicine*, vol. 47, pp. 1344-1364, 2021.
4. C. Rice et al., "Incidence and Trends of Sepsis in US Hospitals Using Clinical or Claims Data, 2009-2014," *JAMA*, vol. 310, no. 13, pp. 1241-1249, 2017, doi: 10.1001/jama.2017.13838.

Proof-of-Concept Prototypes

Functionalities: Conceptualization of the position of device and LiDAR scanners

Challenges:

- Arms create too much bulk
- Magnet-based clamps too weak

Figure 2: Conceptualized model

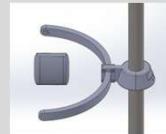


Figure 3: CAD assembly of the conceptual design

Engineering Prototype

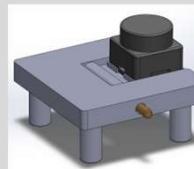


Figure 4: CAD assembly of engineering prototype.

Table 1: Required angles for a simulated LiDAR to scan a model bag (29.3 x 12 x 2.84 cm).

Distance from "bag"	Horizontal rotation angle	Vertical rotation angle
2 cm	169°	-
3 cm	150°	166.2°
4 cm	133.5°	158°
6 cm	105.3°	142°
9 cm	76.6°	123°
12 cm	59°	106°

Simulated in Ansys Zemax OpticStudio

Pre-Production Prototype

Functionalities:

- LiDAR rotates horizontally and scans object
- Converts Spherical to Cartesian coordinates
- Hierarchical clustering identifies bag
- Volume measurement achieved

Standards:

- ISO 13485, ISO 9001, ISO 19159, 21 CFR Part 820, ISO 5425, IEC 60601

Challenges:

- Needs to verify the bag's position and size before assuming symmetry
- Needs two scanners
- Bulky, with wires still exposed

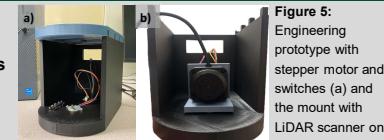


Figure 5: Engineering prototype with stepper motor and switches (a) and the mount with LiDAR scanner on top of the motor (b).

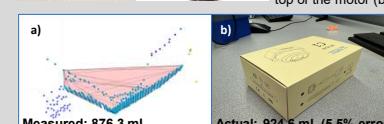


Figure 6: Example of hierarchical clustering (a) on a box (b). Volume estimated by multiplying convex hull volume by 2.

Production Prototype

Figure 7 (left): Final production prototype showing two scanners and clamping on IV pole (a). Display of volume calculation on UI (b).

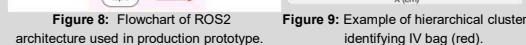
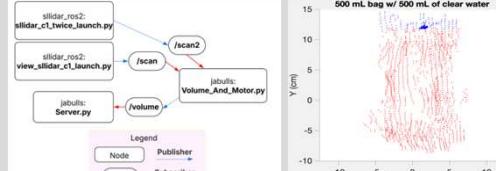



Figure 9: Example of hierarchical clustering identifying IV bag (red).

Testing

Optimal Distance Testing

Table 2: Measurements of a full 500-mL IV bag with water at different distances from the device. (n=30 for each volume)

Distance	25 cm	30 cm	35 cm
Avg Vol (mL)	670.8 \pm 43.4	441.4 \pm 17.1	437.5 \pm 12.5
Error (%)	34.1 \pm 8.7	11.7 \pm 3.4	12.5 \pm 2.4

Continuous Accuracy Testing

Goals:

- Continuously monitor volume change over time
- Analyze impact of volume change on accuracy

Table 3: Raw calculations of 3 volumes of water in 500-mL bag.

Volume	100 mL (n=30)	300 mL (n=30)	500 mL (n=50)
Avg Raw (mL)	119.7 \pm 36.2	264.7 \pm 32.6	464.8 \pm 67.8
95% CI of Avg Raw (mL)	106.75-132.65	253.03-276.37	446.01-483.59
Avg Error (%)	29.6 \pm 28.3	11.0 \pm 6.5	10.3 \pm 11.2
95% CI of Avg Error (%)	19.47-39.73	8.67-13.33	7.20-13.40

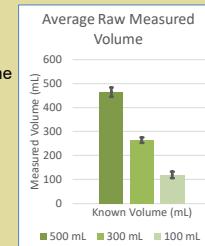


Figure 10: Comparing raw data averages (95% Confidence Intervals visualized as error bars).

Business Plan

Year:	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6	Year 7
Revenue (\$)	1,000,000	1,050,000	1,075,000	2,630,250			
Manufacturing Costs (\$)	424,600	425,000	425,500	426,000	426,500	427,000	427,500
Gross margin (\$)	575,400	574,000	573,500	573,000	572,500	572,000	571,500
Gross Margin (% of Sales)	56%	54%	53%	52%	51%	50%	49%
Operating Expenses							
R&D Costs	424,600	285,000	847,500	450,000	289,900	215,700	220,800
% of Sales	42%	27%	69%	14%	28%	14%	8%
SG&A Costs	75,500	141,000	167,200	314,500	345,900	364,400	383,900
% of Sales	7%	13%	17%	12%	15%	14%	11%
SG&A Facility Costs	45,000	48,000	82,000	91,000	97,000	102,000	107,000
% of Sales	4%	7%	12%	9%	6%	4%	3%
Total Operating Expenses	424,600	385,500	1,038,500	699,400	699,400	686,900	686,900
% of Sales	42%	38%	69%	62%	62%	42%	26%
Pre-Tax Operating Profit	424,600	385,500	1,038,500	699,400	699,400	686,900	686,900
Operating Margin	42%	38%	69%	62%	62%	42%	26%

Figure 11: (Top) 7 Year Income Statement, (Bottom) 5 Year Operating Plan for Device

Acceptance Criteria	Actual Metric
Non-invasive	Scans bag's exterior
Accurate	7.20-13.40% error (500mL, 95% CI)
Continuous	Sets desired cycle number
Remote Monitoring	UI displays most recent calc.
Prevents Interference	Hierarchical clustering
Lightweight	1.84 lb (0.835 kg)
Inexpensive	\$294.41
Proximity to IV bag	30 cm distance

Future Work

- Improve filtering to get results at closer distances.
- Integrate internal power.
- Update design for non-removable IV pole hooks.
- Begin clinical testing.

Acknowledgements

Enzo Teles Brentzel, Gabriela Ferreira Negre, Mohamed Gadalla, Xzavier McKenzie, Nathaniel Richards, Mark Sussman, Medical Engineering: Dr. Souheil Zekri, Mitchell Harrah, Sean Aleman, Sophia Alonso, Ross Turner, Electrical Engineering: Dr. Alejandro Castellanos, Dr. Ashwin Parthasarathy

